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SUMMARY 

Recently the concept of adaptive grid computation has received much attention in the computational fluid 
dynamics research community. This paper continues the previous efforts of multiple one-dimensional 
procedures in developing and asessing the ideas of adaptive grid computation. The focus points here are the 
issue of numerical stability induced by the grid distribution and the accuracy comparison with previously 
reported work. Two two-dimensional problems with complicated characteristics-namely, flow in a channel 
with a sudden expansion and natural convection in an enclosed square cavity-are used to demonstrate some 
salient features of the adaptive grid method. For the channel flow, by appropriate distribution of the grid 
points the numerical algorithm can more effectively dampen out the instabilities, especially those related to 
artificial boundary treatments, and hence can converge to a steady-state solution more rapidly. For a more 
accurate finite difference operator, which contains less undesirable numerical diffusion, the present adaptive 
grid method can yield a steady-state and convergent solution, while uniform grids produce non-convergent 
and numerically oscillating solutions. Furthermore, the grid distribution resulting from the adaptive 
procedure is very responsive to the different characteristics of laminar and turbulent flows. For the problem of 
natural convection, a combination of a multiple one-dimensional adaptive procedure and a variational 
formulation is found very useful. Comparisons of the solutions on uniform and adaptive grids with the 
reported benchmark calculations demonstrate the important role that the adaptive grid computation can 
play in resolving complicated flow characteristics. 

KEY WORDS Adaptive grid computation High Reynolds number flow 

INTRODUCTION 

The concept of adaptive grid solutions has recently received much attention. The most appealing 
aspect of the adaptive grid method is that the grid distribution can be adjusted in an intelligent way 
without resorting to a priori knowledge and/or the intuition of the user, and hence one can reduce 
the size of the grid system that is needed to yield an accurate solution. This was exemplified in a 
study conducted by De Vahl Davis and Jones.’ In comparing the various numerical methods 
submitted by many individuals for calculating the natural convection in a square cavity, they found 
that, to their surprise, the use of a non-uniform grid distribution did not, on the whole, yield better 
numerical accuracy than that of a uniform grid distribution. This finding demonstrates that, while 
a denser distribution of mesh points in ‘suitably chosen’ locations should lead to improved 
accuracy, how to choose such suitable locations and the effects of the consequently coarsened grid 
distribution elsewhere on the numerical accuracy must be considered carefully. 

A number of techniques for constructing adaptive grids for use in solving partial differential 
equations have been comprehensively surveyed by Anderson2 and T h ~ m p s o n . ~  Russell and 
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Christiansen4 noted that all adaptive grid methods essentially attempt to equidistribute some 
weighting function w(x) of the solution, i.e., 

xi+ 1 

w(x) dx = constant s.1 
for a one-dimensional problem. For multi-dimensional Navier-Stokes flow the effective 
application of the adaptive grid method still awaits more research to investigate questions such 
as the different characteristics of the dependent varibles in a coupled system of equations, the 
non-linear behaviour of the flow and the extra complexities introduced by the non-regular flow 
configurations. An adaptive grid method based on the concept of equidistribution has been 
developed by the author as a multi-dimensional procedure and has shown interesting r e~u l t s .~  
The basic idea developed in Reference 5 was that for the Navier-Stokes equations the various 
dependent variables can have different characteristics depending on the flow configuration. For 
example, for flow through a channel with low Mach number, the no-slip restraint for the velocity 
on the solid surface combined with the relatively large Reynolds number can produce a highly 
non-uniform variation of the velocity profile along a specific direction. On the other hand, since 
the Poisson equation governs the pressure distribution and since a totally different kind of 
restraint is imposed on the pressure field by the solid surface, the pressure profile not only has 
a smoother variation but usually changes along different directions from the velocity profile. In 
Reference 5 it was demonstrated that, as a result of these fundamental differences between the 
structures of the pressure field and the velocity field, an adaptive grid strategy that employs 
multiple one-dimensional grid adjustment procedures using different weighting functions for 
different directions is useful. 

In a follow-up study, the author demonstrates that one advantage of this a posteriori multiple 
one-dimensional adaptive grid method is its flexibility and ease in adding grid points along the 
co-ordinates if desired.6 It was shown that in the multi-stage adaptive grid procedure the resulting 
grid system is already close to optimum after a few stages of adaption. Furthermore, as the 
adaptive readjustment of the grid distribution proceeds from the initial grid system, not only is 
the overall error reduced but the error distribution appears more uniform. These findings are 
consistent with the simple model problem analyses reported in Reference 7. 

As to the skewness of the mesh that might be inroduced by multiple one-dimensional 
procedures, Braaten and Shyy8 found, in a somewhat different context, that in practice 
considerable skewness of the individual meshes does not affect the overall numerical accuracy 
in any significant way. Thompson et d9 noted that, based on a local analysis of the Taylor 
series expansion, for a mesh with angles no smaller than 45" between the intersecting co-ordinate 
lines there are virtually no adverse effects of mesh skewness on the numerical accuracy. The 
study conducted in Reference 8 not only supports the assessment of Thompson et al. but also 
indicates that the effects of more excessive local skewness on the overall numerical accuracy of 
the Navier-Stokes equations are quite tolerable. 

In the present study the issue of numerical stability of the adaptive grid method will be 
investigated. In particular it will be demonstrated that by appropriately distributing the grid points 
the numerical algorithm can more effectively dampen out the instabilities, especially those related 
to artificial downstream boundary treatments and higher-order finite difference operators, and 
hence can more rapidly converge to a steady-state solution. Both laminar and turbulent flows will 
be investigated, and the responsiveness of the grid distribution with respect to the Reynolds 
number will be studied. Next, the problem of two-dimensional natural convection in an upright 
square cavity will be considered. It will be shown that an adaptive procedure combining a multiple 
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one-dimensional procedure and a variational formulation can also be effectively applied to this 
problem to yield accurate solutions. 

NUMERICAL ALGORITHM 

The governing equations together with the co-ordinate transformations have been discussed 
previously5 and will not be elaborated here. Briefly, a staggered grid system" is adopted, and the 
implementational details in the context of a curvilinear co-ordinate system can be found in 
References 8 and 11. The momentum equations are first solved to obtain the velocity components 
with an assumed pressure field. After solving the momentum equations, the contravariant velocity 
components are calculated from the velocity field. If the calculated velocity field does not satisfy the 
continuity equation, the pressure distribution and velocity field are corrected accordingly. 

For the numerical treatment of the downstream open boundary, the formula suggested in 
Reference 12 is adopted, i.e., 4t = 0 is taken for u- and v-velocity components, where [-lines are 
along the streamwise direction. The static pressure does not require any prescription of the 
boundary condition owing to the use of the staggered grid system." 

In terms of the finite difference operators approximating the various terms in the Navier-Stokes 
equations, all but the convection terms are discretized by using the standard second-order central 
differencing scheme. For the convection terms various upwind-based schemes are also available, as 
investigated in References 13-15. In the present numerical framework the so-called hybrid 
scheme,1° a selective use of the first-order upwind or second-order central differencing scheme, 
dependent upon whether the local cell Reynolds number is larger than two or not, is always 
adopted at the nodes next to all boundaries for all upwind-based schemes discussed in 
References 13 and 14 to avoid the need for extrapolation and to stabilize the numerical procedure. 
This procedure is able to yield satisfactory results which are consistent with those reported by 
Blottner. The detailed numerical implementation for these schemes can be found in Reference 
17. In the illustration of the numerical results, both the second-order upwind scheme and the 
hybrid scheme will be adopted. 

EFFECTS OF GRID DISTRIBUTION ON CONVERGENCE RATE 

The first flow configuration under consideration is that of a two-dimensional planar channel 
with a one-sided sudden expansion. The flow is incompressible and laminar, and the inlet velocity 
is taken as a plug profile with Reynolds number, based on the inlet height, equal to 250. The 
original uniform grid with 41 x 26 nodes is shown in Figure l(a). It is noted that for the 
flow in the present configuration with high Reynolds number a large recirculating eddy is formed in 
the expansion region which can run across the downstream boundary of the computational 
domain, which is very different from the studies conducted in References 5 and 6. Consequently, 
the interaction of the boundary treatments and the numerical algorithm for the interior domain 
can affect the convergence of steady-state solution.'0,'8 Nevertheless, it is demonstrated in 
Reference 18 that for the flow considered here the steady-state solutions can be obtained 
numerically and the flow characteristics prove to be very insensitive to the position of the 
downstream boundary. 

Figures l(a)-(c) show the grid distributions from the original and two stages of the adaptive 
procedure. In the present notation each adaptive stage constitutes (i) the creation of a new adaptive 
grid system based on the given grid system and the numerical solution obtained from that grid 
system, and (ii) the flow field calculated on this adaptive grid system. Thus the present adaptive grid 
method is in the category of a sequential procedure. In this manner, although the number of 
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(a) Original uniform grid 

(b) Adaptive grid - first stage 

(c) Adaptive grid - second stage 

Figure 1. Adaptive grid procedure for flow in channel with one-sided expansion (hybrid scheme, Re = 250) 

adaptive stages can in principle continue indefinitely, in practice i t  only needs a few stages to reach 
an optimum grid distribution, as will be demonstrated. Here, the weighting function along the 
q-line used in the adaptive procedure is 

w = 1 + Iu41 + Iu,I. 

The subscript designates the derivative of the variable along the q-family of co-ordinate lines 
(cross-stream direction). In the context of an equidistribution constraint, this weighting function 
more or less produces a constant arc length in the solution curve across each mesh spacing. For 
the weighting function along the [-line (streamwise direction), since this particular geometry 
only produces a very moderate pressure gradient along the axial direction, it was found that 
w = 1 is satisfactory; i.e., the mesh spacing is equally distributed along the <-line. 
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Figure 2. Effects of grid distribution on convergence rate (hybrid scheme, Re = 250) 

Two finite difference operators approximating the convection terms are investigated here: the 
so-called hybrid scheme" and the second-order upwind scherne.'j The adaptive grid systems 
together with their influences on the convergence rates (based on the same initial guesses, i.e., 
all the cases have been run for the same initial condition) for the hybrid scheme are shown in 
Figures 1 and 2. The mass residual and kinetic energy are defined respectively as the absolute 
sum of the mass flux unbalances in all the computational cells and the unweighted sum of the 
kinetic energies at all the nodal points. The kinetic energy indicator does not represent the 
integrated overall kinetic energy carried by the fluid, but it has been found to be a very useful 
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(c) Adaptive grid - second stage 

(b) Adaptive grid - first stage 

(d) Adaptive grid - third stage 

(e) Adaptive grid - fourth stage 

Figure 3(a). Adaptive grid procedure for flow in channel with one-sided expansion (second-order upwind scheme, 
Re = 250) 

tool for assessing the convergence of the numerical solution. It has been seen that for this 
particular problem with the hybrid scheme, one stage of adaptive grid is sufficient. Besides 
resolving the flow scales in a better way, the number of iterations needed with the adaptive grid 
system is about 40% less than with the uniform grid. The adaptive process with the second-order 
upwind scheme is shown in Figures 3 and 4. It is striking to observe that initially, on the uniform 
grid system, the numerical instabilities introduced by the numerical treatment along the 
downstream open boundary cause the mass residual to oscillate at a fixed level without dropping 
off. After one stage of adaptive computing, however, the grid system has an adjusted distribution 
which shows finer resolution in the free shear layer; the flow gradients are higher and can more 
effectively dampen out the disturbances, while the convergence rate is essentially comparable 
with that of the hybrid scheme. This result once more demonstrates that, although the convection 
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term approximations are very important in determining the numerical accuracy, the distribution 
of the grid points should receive equal attention. The calculated u-velocity contours on uniform 
and adaptive grids are shown in Figure 3(b). 

A turbulent flow with the inlet Reynolds number equal to 2.5 x lo5 has also been studied for the 
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Figure 5(a). Grid systems and calculated solutions with second-order upwind scheme, Re = 2.5 x lo5 

same geometrical configuration. The standard k--E two-equation model with the wall function 
treatment along the solid wall is used; all other boundary conditions remain the same as for the 
laminar flow cases. Figure 5 shows the grid system, the calculated solutions and the convergence 
path for the computation using the second-order upwind scheme. It is seen that the characteristics 
of the convergence paths for both the laminar and turbulent flows are similar; the adaptive grid is 
needed to resolve the flow features better and hence to dampen out the numerical instabilities. On 
the other hand, the velocity gradients in the wall and free shear flow regions are steeper for the 
turbulent flows. These characteristics are well reflected in the adaptive grid systems, which show 
that for the turbulent flow calculations the grid densities are higher in the regions of high 
velocity gradient. 

NATURAL CONVECTION FLOW 

The problem of natural convection of Navier-Stokes flow with the Boussinesq approximation 
in an upright two-dimensional square cavity is entirely prescribed by two dimensionless 
parameters, the Rayleigh number Ra and the Prandtl number Pr. The description of the problem 
is shown in Figure 6. Much numerical work has been reported in the literature, e.g. Reference 19, 
for flows up to Ra = lo6. For laminar flow with Ra > lo6 stable and accurate numerical solutions 
are difficult to obtain. The work by Le Quere and De Roquefort,20 who use a semi-implicit 
spectral method, is one of the few reported studies for Ra = lo7 and higher. 

In the present work the adaptive grid method is applied to laminar natural convection flow 
in a square cavity with Ra = 105-107 and Pr = 0.71. For the problem considered here the same 
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Figure 5(b). Effects of grid system on convergence rate for flow in channel (41 x 26 grid) with second-order upwind scheme, 
Re = 2.5 x lo5 

weighting function is applied to both 5- and rpco-ordinate lines, since the flow is contained 
within an enclosed cavity and the no-slip constraint is dominant along boundaries. The weighting 
function used in this study is 

w(s) = a + I 4  + Ivsl, 
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Figure 6. Schematic of natural convectior~ problem in square cavity 

(a) Uniform grid (b) Adaptive grid 

Figure 7. Grid systems of the natural convection flow in a square cavity (41 x 41 nodes, Ra = 10') 

where a is a constant taken as 5 here to smooth out the grid distribution5 and us and us are the 
gradients of the velocities (normalized by the maximum values) along the r- and q-co-ordinate 
lines. The adaptive procedure is conducted after the solution on the original grid is obtained and 
can proceed iteratively. 

Since the solution is skew-symmetric with respect to the centre point of the cavity, the resulting 
mesh distribution of the adaptive grid procedure is more skewed than desirable. To maintain the 
numerical stability of the solution algorithm, it is found very useful to make the interior grid 
distribution smoother and more orthogonal while fixing the boundary points obtained from the 
adaptive procedure. This post-processing strategy yields a better compromise between the solution 
adaption and the grid smoothness. The variational principle developed by Brackbill and 
Sa1tzmann2l was applied to perform this task, with the smoothness and the orthogonality being 
given equal emphasis. This procedure has been utilized previ~usly '~ as an aid to generating a grid 
system which can balance the smoothness and orthogonality. 

A uniform grid system with 41 x 41 nodal points was used as the original grid system. The 
original and adaptive grid systems are shown in Figure 7. The adaptive grid system is based on the 
numerical solution obtained on the uniform grid. A new calculation was then conducted on the 
adaptive grid system to yield an adaptive grid solution. Compared with the original grid system, 
the adaptive grid system concentrates the grid distribution in the corner and wall regions in a non- 
uniform manner. Figure 8 compares the temperature contours for the results calculated on the two 
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(a) Uniform grid solution (b) Adaptive grid solution 

Figure 8. Comparison of constant-temperature contours between two grid solutions (41 x 41 grid, Ra = 10’) 
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Figure 9. Comparison of velocity fields between two grid solutions (41 x 41 grid, Ra = 10’) 

grid systems. The adaptive solution shows sharper peaks close to the side walls and has a more 
curved temperature distribution in the top and bottom regions, which is consistent with the results 
reported in Reference 20. Figure 9 compares the velocity vectors for the solutions obtained on the 
two grid systems. The magnitudes of all the vectors have been scaled up to depict the fine flow 
structures. Noticeable differences in the flow characteristics are observed. The streamlines of the 
adaptive grid solution are again closer to those shown in Reference 20. The adaptive grid solution 
shows more complicated vortex cell structures within the bulk fluid; it also depicts extra 
recirculating bubbles in the top and bottom wall regions which are absent from the uniform grid 
solution. The computed maximum value ofthe v-velocity component on the adaptive grid system is 
682, which agrees with that reported in Reference 20 to within 2.5%. In Reference 20, 65 x 65 
uniform nodes were used in conjunction with the spectral method. On the other hand, the 
computed maximum value of the u-velocity component of the present study on the uniform 
grid is 509. 

Figures 10 and 11 compare the temperature and velocity fields calculated on the uniform and 
adaptive grid systems for Ra=106, while Figures 12 and 13 show the same comparison for 
Ra = lo5. Table I compares the maximum values of the vertical velocities obtained from the present 
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(a) Uniform grid solution (b) Adaptive grid solution 

Figure 10. Comparison of constant-temperature contours between two grid solutions (41 x 41 grid, Ra = lo6) 

(a) Uniform grid solution 
(I4nax =19w 

(b) Adaptive grid solution 
(Ivlrnax =219.7) 

Figure 11. Comparison of velocity fields between two grid solutions (41 x 41 grid, Ra = lo6) 

(a) Uniform grid solution (b) Adaptive grid solution 

Figure 12. Comparison of constant-temperature contours between two grid solutions (41 x 41 grid, Ra = lo5) 
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(a) Uniform grid solution (b) Adaptive grid solution 
(Iulrnax =66.70) (Ivlrnax =67.96) 

Figure 13. Comparison of velocity fields between two grid solutions (41 x 41 grid, Ra = lo5) 

work with three benchmark-type results reported in the l i t e r a t ~ r e ' ~ * ~ ~ * ~ ~  where care has been 
taken to ensure good accuracy of the numerical results. With the present size of grid system, both 
the uniform and adaptive grid results are quite accurate for Ra = lo5, where the flow structure 
varies in a smooth manner and hence the uniform grids are adequate to use. As the Rayleigh 
number increases, the scales of flow vary more rapidly and so do the discrepancies between the 
uniform grid and adaptive grid solutions. On the other hand, the adaptive grid results for all cases 
are in good agreement with those reported in References 19,20 and 22 to within the numerical 
uncertainties. These comparisons clearly demonstrate the important role that the adaptive grid 
computation can play in resolving complicated flow characteristics, especially when the 
appropriate grid distribution cannot be accurately determined beforehand. 

As to the role of the pressure gradient, as shown in Reference 5,  for the present expansion channel 
flow the variation of the pressure gradient is very moderate and hence is not influential in the 
weighting function. Reference 5 also shows that the inclusion of the pressure term in the weighting 
function is more influential for the contraction channel flow. For the natural convection cavity 
flow, since the dominant constraint is from the enclosed walls on all sides, the velocity gradient is 
again more influential. The point is that the multiple one-dimensional adaptive grid approach can 
be combined with various weighting functions whose most appropriate forms should be dependent 
upon the flow characteristics. 

CONCLUSIONS 

Based on the results reported here, the following observations can be made. 

It has been demonstrated that the adaptive grid solution can usefully improve the accuracy 
of the numerical solution with a fixed number of grid points. 
By adaptively adjusting the grid distribution according to the flow characteristics, the 
numerical algorithm can more effectively dampen out the instabilities and hence can 
converge to a steady-state solution more rapidly. For a more accurate finite difference 
operator, such as the second-order upwind scheme, which contains less undesirable 
numerical diffusion, the adaptive grid system can yield a steady-state and convergent 
solution, while uniform grids produce non-convergent and numerically oscillating 
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Table I. Comparison of calculated maximum vertical velocity for 
natural convection in a square cavity 

Source* 

Maximum 
vertical 
velocity 

(I) Ra= lo4 
1. DeVahl Davis” 19-62 
2. Markatos and Pericleous” 19-44 
3. Le Quere and De Roquefort” 19.63 
4. Present work: 41 x 41 uniform grid 19.42 
5. Present work: 41 x 41 adaptive grid 1952 

(11) Ra= lo5 
1. DeVahl Davidg 68.59 
2. Markatos and Pericleous” 69.08 
3. Le Quere and De Roquefort” 68.65 
4. Present work: 41 x 41 uniform grid 66.70 
5. Present work: 41 x 41 adaptive grid 67.96 

(111) Ra = lo6 
1. DeVahl DavisIg 219.36 
2. Markatos and Pericleous” 221.8 
3. Le Quere and De Roquefort” 22057 
4. Present work: 41 x 41 uniform grid 198.0 
5.  Present work: 41 x 41 adaptive grid 219.7 

1. DeVahl Davistg No data 
2. Markatos and Pericleous” No data 
3. Le Quere and De Roquefort” 699.3 
4. Present work: 41 x 41 uniform grid 590.5 
5. Present work: 41 x 41 adaptive grid 682.0 

* 

(IV) R U =  107 

Remarks on various computational techniques: 
Second-order central difference scheme for convection terms. 
Uniform 81 x 81 grid and Richardson extrapolation. 
Claims to be accurate to better than 1%. 

Non-uniform 41 x 41 grid. 
No mention of criteria for grid distribution. 

Uniform 65 x 65 grid. 
Agreement to third decimal place between solutions on 33 x 33 and 65 x 65 grids for Ra = lo6. 

2 2  First-order upwind scheme for convection terms. 

zo Spectral method with Chebyshe polynomials. 

solutions. It is noted that this phenomenon is, in some way, uniquely related to the fact that 
for the present channel configuration, the recirculating flow passes across the open outflow 
boundary. In Reference 6,  where the open boundary does not contain any recirculating flow, 
the differences in convergence rate among different grid systems are less noticeable. 

(3) Both laminar and turbulent flows have been calculated, and the resulting adaptive grid 
systems reflect well the differences in the flow characteristics. 

(4) Although the multiple one-dimensional adaptive procedure does not explicitly control 
the local mesh skewness, numerical evidence (References 5, 6, 8 and the present study) 
appears to suggest that the effects of local mesh skewness on the overall numerical accuracy 
are usually not significant. 

(5) As to the choice of the finite difference operators approximating the convection terms, while 
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the different schemes have different intrinsic stability and accuracy characteristics,’ 3 * 1 4  it is 
obvious that a balanced compromise of a good finite difference operator and a good grid 
distribution is certainly a very desirable and workable approach. 

Overall, it is clear that the adaptive grid solution can be very useful in improving both the 
convergence rate and the numerical accuracy. It appears that by devising the appropriate 
weighting function and adaptive procedures according to the requirements of the flow 
characteristics, such as for the cases shown in the present study, numerical solutions with desirable 
accuracy can be obtained for many problems without resorting to an extremely large grid system. 
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